Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Deep neural network (DNN) classifiers are powerful tools that drive a broad spectrum of important applications, from image recognition to autonomous vehicles. Unfortunately, DNNs are known to be vulnerable to adversarial attacks that affect virtually all state-of-the-art models. These attacks make small imperceptible modifications to inputs that are sufficient to induce the DNNs to produce the wrong classification. In this paper we propose a novel, lightweight adversarial correction and/or detection mechanism for image classifiers that relies on undervolting (running a chip at a voltage that is slightly below its safe margin). We propose using controlled undervolting of the chip running the inference process in order to introduce a limited number of compute errors. We show that these errors disrupt the adversarial input in a way that can be used either to correct the classification or detect the input as adversarial. We evaluate the proposed solution in an FPGA design and through software simulation. We evaluate 10 attacks and show average detection rates of 77% and 90% on two popular DNNs.more » « less
-
Row hammer attacks exploit electrical interactions between neighboring memory cells in high-density dynamic random-access memory (DRAM) to induce memory errors. By rapidly and repeatedly accessing DRAMs with specific patterns, an adversary with limited privilege on the target machine may trigger bit flips in memory regions that he has no permission to access directly. In this paper, we explore row hammer attacks in cross-VM settings, in which a malicious VM exploits bit flips induced by row hammer attacks to crack memory isolation enforced by virtualization. To do so with high fidelity, we develop novel techniques to determine the physical address mapping in DRAM modules at runtime (to improve the effectiveness of double-sided row hammer attacks), methods to exhaustively hammer a large fraction of physical memory from a guest VM (to collect exploitable vulnerable bits), and innovative approaches to break Xen paravirtualized memory isolation (to access arbitrary physical memory of the shared machine). Our study also suggests that the demonstrated row hammer attacks are applicable in modern public clouds where Xen paravirtualization technology is adopted. This shows that the presented cross-VM row hammer attacks are of practical importance.more » « less
-
The pin count largely determines the cost of a chip package, which is often comparable to the cost of a die. In 3D processor-memory designs, power and ground (P/G) pins can account for the majority of the pins. This is because packages include separate pins for the disjoint processor and memory power delivery networks (PDNs). Supporting separate PDNs and P/G pins for processor and memory is inefficient, as each set has to be provisioned for the worst-case power delivery requirements. In this paper, we propose to reduce the number of P/G pins of both processor and memory in a 3D design, and dynamically and opportunistically divert some power between the two PDNs on demand. To perform the power transfer, we use a small bidirectional on-chip voltage regulator that connects the two PDNs. Our concept, called Snatch, is effective. It allows the computer to execute code sections with high processor or memory power requirements without having to throttle performance. We evaluate Snatch with simulations of an 8-core multicore stacked with two memory dies. In a set of compute-intensive codes, the processor snatches memory power for 30% of the time on average, speeding-up the codes by up to 23% over advanced turbo-boosting; in memory-intensive codes, the memory snatches processor power. Alternatively, Snatch can reduce the package cost by about 30%.more » « less
An official website of the United States government

Full Text Available